243 research outputs found

    Explicit Evidence Systems with Common Knowledge

    Full text link
    Justification logics are epistemic logics that explicitly include justifications for the agents' knowledge. We develop a multi-agent justification logic with evidence terms for individual agents as well as for common knowledge. We define a Kripke-style semantics that is similar to Fitting's semantics for the Logic of Proofs LP. We show the soundness, completeness, and finite model property of our multi-agent justification logic with respect to this Kripke-style semantics. We demonstrate that our logic is a conservative extension of Yavorskaya's minimal bimodal explicit evidence logic, which is a two-agent version of LP. We discuss the relationship of our logic to the multi-agent modal logic S4 with common knowledge. Finally, we give a brief analysis of the coordinated attack problem in the newly developed language of our logic

    Asymptotic normalization coefficients for mirror virtual nucleon decays in a microscopic cluster model

    Get PDF
    It has been suggested recently (Phys. Rev. Lett. 91, 232501 (2003)) that charge symmetry of nucleon-nucleon interactions relates the Asymptotic Normalization Coefficients (ANCs) of proton and neutron virtual decays of mirror nuclei. This relation is given by a simple analytical formula which involves proton and neutron separation energies, charges of residual nuclei and the range of their strong interaction with the last nucleon. Relation between mirror ANCs, if understood properly, can be used to predict astrophysically relevant direct proton capture cross sections using neutron ANCs measured with stable beams. In this work, we calculate one-nucleon ANCs for several light mirror pairs, using microscopic two-, three- and four-cluster models, and compare the ratio of mirror ANCs to the predictions of the simple analytic formula. We also investigate mirror symmetry between other characteristics of mirror one-nucleon overlap integrals, namely, spectroscopic factors and single-particle ANCs.Comment: 12 pages, submitted to Phys. Rev.

    On stress/strain state in a rotating disk

    Get PDF
    In the framework of mechanics of continuum bodies, the problem of stress/strain state in a high-speed rotating disk of constant thickness has been considered. The material of the disk is assumed to be homogeneous, elastic/perfectly-plastic. In the plastic zone, the stresses and plastic strains are related by some associated law similar to the one employed in deformation theory of plasticity. The general algorithm of the solution covers any smooth plasticity function. At some steps of the algorithm, it is possible to get analytical expressions, particularly, for the quadratic Mises yield criterion. For the given model, the notion of control parameters (external and internal) has been introduced. The allowable boundaries of external parameters have been defined as well. For some states of the disk, the coherent values of external parameters have been obtained. The results are represented graphically to show various states of the disk. The usage of piecewise plasticity functions has been briefly discussed. The results obtained can be used in preliminary engineering design and related numerical codes.info:eu-repo/semantics/publishedVersio

    Microbial carbonate build-ups at methane seeps near the upper boundary of the gas-hydrate stability zone in the Black Sea: results of EU project CRIMEA

    Get PDF
    Extensive dredging carried out in May-June 2004 in the deeper parts of the Dnepr paleo-delta area (NW Black Sea) yielded for the first time chimney-shaped carbonate microbial build-ups, which occur at methane seeps close to upper boundary of the gas-hydrate stability zone (~ 700 m). Carbonate samples taken with a benthic trawl represent fragments of the uppermost, middle and lowest parts of the build-up, which are similar to those found previously at the shallower and deeper methane seeps in the Black Sea. At the same time, the holed, plate-like carbonates in the lowest parts of the build-up provide first indications that gas channels are formed during the earliest growth phase of these microbial structures. Stable carbon isotope analyses of the carbonates from the uppermost fragments gave the d13C values ranging from -33.7 to -36.6 pro mil, while the d13C values of the lowermost fragments are significantly lighter, varying between -42.0 and -44.6 pro mil. Both these types of carbonates indicate that a major portion of the carbonate carbon originates from bacterial oxidation of the seeping methane. Oxygen isotopic values also show differences between the more irregular and porous samples from the uppermost part of the build-up, which are composed of a mixture of aragonite and Mg-calcite (d18O = 0.7 to 0.94 pro mil, and the only Mg-calcite cemented thin slabs of lowermost carbonates (d18O = 1.35 to 1.57 pro mil. The difference in d13C/d18O ratio found in the upper and lower parts of the build-up may reflect the changing of the water temperature and salinity during the chimney growth

    Explicit Auditing

    Get PDF
    The Calculus of Audited Units (CAU) is a typed lambda calculus resulting from a computational interpretation of Artemov's Justification Logic under the Curry-Howard isomorphism; it extends the simply typed lambda calculus by providing audited types, inhabited by expressions carrying a trail of their past computation history. Unlike most other auditing techniques, CAU allows the inspection of trails at runtime as a first-class operation, with applications in security, debugging, and transparency of scientific computation. An efficient implementation of CAU is challenging: not only do the sizes of trails grow rapidly, but they also need to be normalized after every beta reduction. In this paper, we study how to reduce terms more efficiently in an untyped variant of CAU by means of explicit substitutions and explicit auditing operations, finally deriving a call-by-value abstract machine

    Aluminum “Core-shell” microparticles with an oxide shell - fillers of spatially strengthened composites, facilitating material digitization

    Get PDF
    The transformation of aluminum “Core-shell” microparticles formed by low-temperature oxidation with water during their heating in a controlled atmosphere has been studied. Spherical particles with an oxide shell, convenient for mathematical modeling of the structure and properties of the developed composites, are planned to be used as fillers for metal and polymer oxide composites, as well as for 3D printing
    corecore